
J .  Fluid Me&. (1985), vol. 159, pp.  443458 

Printed in &eat Britain 

433 

A study of nonlinear wave resistance using integral 
equations in Fourier space 

By T. MILOH AND G. DAGAN 
Department of Fluid Mechanics and Heat Transfer, Faculty of Engineering, 

Tel Aviv University, Tel Aviv 69978, Israel 

(Received 6 February 1984 and in revised form 29 April 1985) 

An attempt is made in this paper to tackle the problem of nonlinear wave resistance 
by formulating it in Fourier space and by deriving a nonlinear integral equation for 
the wave amplitude by an approach similar to the one leading to the Zakharov 
equation. 

The procedure is illustrated for two simple examples of two- and three-dimensional 
travelling pressure distributions. A regular perturbation solution up to third-order 
terms in the slenderness parameter shows that the expansion is not uniform for small 
Froude numbers. A uniform, generalized, expansion is then constructed, with its 
leading term satisfying a new nonlinear integral equation. This rather simple integral 
equation, of a Volterra type, is solved numerically. The generalized wave drag is 
shown to be significantly larger than the one predicted by the regular perturbation 
expansion at small Froude number. The method adopted here has the advantage of 
singling out in a systematic manner the terms of the free-surface conditions which 
cause the small-Froude-number non-uniformity, and it is applicable to both two- and 
three-dimensional flows. The results are compared with existing approximate methods 
of computing wave drag at low Froude numbers. It is found that quasilinearized 
approximations may be quite accurate for the examples considered here. 

1. Introduction 
For many decades the study of the wave resistance of steadily moving bodies or 

pressure distributions has been dominated by linear theory. The starting point of 
this period is considered to be marked by the pioneering works of Kelvin (1887) and 
Michell (1898) (a review of the various stages of development of the theory of wave 
resistance can be found in Tulin 1978). It is only in the last two decades that nonlinear 
effects have been studied with increasing intensity by naval hydrodynamicists. These 
studies have been motivated by the lack of agreement between the linearized theory 
and measurements on one hand, and have been made possible by the advent of fast 
electronic computers on the other. 

The linearized approximate solution can be obtained in a rational manner by 
regarding it as a first-order term in an asymptotic expansion in a slenderness or 
deep-submergence small parameter (e.g. Wehausen & Laitone 1960). The natural 
extension into the nonlinear domain is achieved by calculating the second-order 
approximation, which is quadratic in the small parameter. This avenue has not been 
found so far to be promising for two reasons: first, the computations become very 
tedious, even by numerical means, and, secondly, and more importantly, the 
expansion becomes non-uniform for small Froude numbers. The presence of a third 
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lengthscale besides those characterizing the body, namely the wavelength of the 
far free waves, is an omen for non-uniformity in many problems of fluid mechanics 
(Van Dyke 1964). 

A few approximate approaches have been developed in the past in order to 
circumvent these difficulties, and a lucid and comprehensive discussion, which is 
beyond the scope of the present study, may be found in Tulin (1978). In essence, 
significant progress has been achieved in the understanding of small-Froude-number 
nonlinear effects in two-dimensional flows. This progress was made possible by the 
relative simplicity of two-dimensional flows, which permits one to use the powerful 
tool of the theory of analytic functions of complex variables. On this basis, a few 
studies (e.g. Ogilvie 1968; Dagan 1975; Doctors & Dagan 1980) have arrived at  the 
view that the small-Froude-number nonlinear effect stems from the interaction 
between the free waves generated by the body or the pressure on one hand and the 
slowly varying non-uniform flow prevailing near the disturbances on the other. A few 
quasilinearization techniques, discussed by Doctors & Dagan (1980) for a particular 
example and by Tulin (1978) in a general manner, have been suggested in order to 
account for this effect. 

Less progress has been achieved in the case of three-dimensional flows, which are 
the ones of paramount interest in applications. Some quasilinearization techniques 
have been suggested as well, and two of them, those of Inui & Kajitani (1977) and 
Dawson (1977), will be discussed in $6. Their validation has been confined, however, 
to using them in order to solve by numerical methods a few examples of flow past 
ship forms and comparing the computed results for the wave drag with measurements. 
Although the ultimate test for any theory is its degree of agreement with experimental 
results, we believe that a better understanding of the mechanism of three-dimensional 
wave generation on theoretical grounds is an important step still to be accomplished. 
The present study has been motivated by this need, and its primary aim is to derive 
uniform, nonlinear solutions of the wave-generation problem by theoretical means 
and to compare them with existing, approximate techniques. To achieve this goal 
we have investigated the solution of the free-surface flow problem in Fourier space. 
This line of attack has been motivated by the considerable progress attained in the 
understanding of nonlinear interaction of free-surface waves by the study of the 
Zakharov (1  968) equation, which is formulated in Fourier space. Furthermore, unlike 
complex variables, the Fourier-transform methodology applies equally to two- and 
three-dimensional flows. The present study presents only a first step in this direction, 
since it applies the approach to the wave resistance of a particular case of a travelling 
pressure distribution, while a similar study for a submerged cylinder or sphere has 
been published elsewhere (Dagan & Miloh 1985). 

The plan of the paper is as follows. In $2 we cast the equations of free-surface 
flow as an integral equati0.n in Fourier space along the lines of Zakharov’s (1968) 
approach. This equation is first solved by the classical small-perturbation expansion 
approximation, and in $$3 and 4 we derive in a closed, analytical, form the first- and 
second-order solutions for a particular travelling pressure distribution. These solutions 
reveal in a clear fashion the presence of the small-Froude-number non-uniformity and 
its origin. The main contribution of the present study is made in $5, where we present 
an integral equation which renders a nonlinear uniformly valid solution in a domain 
of small Froude numbers, for which the perturbation expansion fails. This integral 
equation, of a Volterra type, is much simpler to handle than the original one and can 
be easily solved numerically. Finally, in $6 we compare the new solution with the 



Nonlinear wave resistance formulated in Fourier space 435 

ones based on various quasilinearized approximations, including those already 
mentioned. In Appendix B we show that for the range of values considered in the 
selected examples of pressure distributions the nonlinear third-order effects are 
relatively small. 

2. Mathematical statement of the problem 
We consider the irrotational flow ofa heavy fluid caused by a pressure distribution 

acting on the free surface and which moves steadily in the x-direction. Variables are 
made dimensionless with respect to the velocity U ,  the lengthscale U2/g  and the fluid 
specific mass p'. The flow is referred to a Cartesian system attached to the moving 
pressure, with the x- and z-coordinates in the horizontal plane of the unperturbed 
free surface and y a vertical coordinate pointing upwards. The unperturbed velocity 
vector therefore has components ( - 1,0,0) in this system. With @ the disturbance 
velocity potential and y = ~ ( x ,  z )  the equation of the free surface, the exact equations 

a w  
aY2 

governing the flow are 

vw+- = 0 (y < T(X,  z ) ) ,  

where p(x, z )  is a prescribed pressure acting on the free surface and V = @/ax, a/&) 
denotes the horizontal gradient operator. These equations have to be supplemented 
by the radiation condition, which requires that waves propagate downstream. 

Following Zakharov (1968), we define 
a@ 
a Y  

wx ,  2) = @(x, r(x, 4 , z )  and 

and rewrite the free-surface boundary conditions (2.2) by chain differentiation as 

x(x, 2) = - (2, r(x,  z ) ,  z )  

The next step is to take the Fourier transform (FT) of (2.3), and for this purpose 
let us first define the FT of Y(x ,  z )  and q(x, z )  by 

$(k) = (2n)-tm Irn Y(z, z )  eikax dx 
-a3 

g(k) = (2n)-:" Srn ~ ( x ,  z )  eikex dx 
-al 

where m = 1 or 2 for two- and three-dimensional flows respectively. Here x denotes 
a coordinate vector with components (x,z), k is the wavenumber vector with 
components (k,, k,) and integration is carried out in the (x, 2)- and (kz, k,)-planes 
respectively. For three-dimensional flows we operate with the polar coordinates 
defined by k, = p cos8 and kz = p sin 8. In the case of two-dimensional flow the 
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coordinate z has to be suppressed in all equations, and x and k should be replaced 
by k and x respectively. It should be emphasized that @(k) (2.4) differs from #(k), 
the conventional definition of the FT of @(x,O,z) ,  the velocity potential on a 
horizontal plane. In  fact the two are related by 

(2.5) ? I  W 

Y ( x ,  z )  = (27~)-tm $(k) elklv(s,z) e-ik*xdk J-, 
J-, 
a, 

~ ( x ,  z )  = (2n)-tm I k I $(k) elklv(z,z) e-ik'xdk 

which results from taking the FT of the Laplace equation (2.1). 
Applying the FT to (2.3), with convolution integrals resulting from FT of products, 

yields a set of two integral equations for the FT of Y, 7 and x. In Zakharov's 
procedure the latter is expressed in terms of the first by invoking weak nonlinearity 
and expanding exp(lkl7) in (2.5) in a Taylor series to third order in Iklr. 
Eventually, by using an iterative procedure, the FT of x(x) is expressed with the aid 
of @(k) and LJk). The details of this derivation are not presented here, and the 
interested reader is referred to the original work of Zakharov (1968) or to the 
comprehensive review of Yuen & Lake (1982). The final results for the FT of (2.3) 
are the following Zakharov-type coupled integral equations, correct to third order 
in the amplitude 6 :  

- ik, Y(k) + I k I W )  
W 

= (2x)-im J-, Kl(k, k,) Wl) ak-k l )  *, 
+ (2x)-trn JJ-: K,(k, kl,k,) W1) C(k,) 5(k-kl-k,) dk, dk,, (2.6) 

W 

ik, @(k) + c(k) = -17(k) + (2x)-tm J-, K 3 ( k 7  kl) Ilr(kl) @(k-kl) dkl 

+ (2N-t" JJ-; K,(k k,, k,) @Fl) @r(k,) fl(k-k,-k,) dk, a,. (2.7) 

Equations (2.6) and (2.7) may be also reproduced from Yuen & Lake (1982, 
equations (103)-( 104)), where one can find also a more detailed derivation. The time 
derivatives in the original Zakharov equations there have been replaced here by ik, 
and a typographical error in the last term of (2.7) has been also corrected. The major, 
and essential, difference, however, between the above formulation and that leading 
to the so-called Zakharov integral equation is in the appearance of 17, the FT of the 
pressure p ,  as a forcing term in the right-hand side of (2.7). 

The kernels K,, K,, K, and K4 have the following expressions (Yuen & Lake 1982) 

A t  this point the present analysis deviates from the common procedure leading to 
the Zakharov equation, which considers the nonlinear third-order interaction between 
a rapidly and a slowly varying wave. 
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k,, = - 1 k, = I p = SeC'O 

v v 
(4 (b) 

FIGURE 1.  The integration path for the inversion of the Fourier transforms: 
(a) two-dimensional flow ; (a) three-dimensional flow. 

* 
P 

Elimination of @ from (2.6) and (2.7) and retaining terms up to third order yields 
a single integral equation for the FT of the free surface profile 

A(k)  5(k) = -W) + (2Wfrn J W  P,(k k,) W,) W - k , )  dk, 
-00 

+(2WBrn JJ-, P,(k,k,,k,)S(k,)S(k,)S(k-k,-k,)dk,dk,, (2.9) 

where the function A(k)  is given by 

A(k)  = 1-- k; 
Ikl 

(2.10) 

and A(k)  = 0 has zeros at k, = 1 and k,, = - 1 in two dimensions and at p = sec2 19 
in three dimensions. The radiation condition is automatically satisfied if the 
integration path in the inversion of ( in the complex plane in which k or p serve as 
real axes, respectively, circumvents the zeros of A from below (figure 1). The kernels 
P, and P, in (2.9) are given by 

Finally, it was found convenient to define the complex amplitude by 

w = -A@) C(k)ln(k), (2.13) 

which after substitution in (2.9) leads to the following integral equation : 

a ( k )  = 1 + (2x)-frn Q,(k, k,) a(&,) a(k -kl) dk, 
00 s_, 

+(2n)-rn Jl-: kl> kZ) a(k,) a ( k - k 1 - k 2 )  dk1dk2, (2*14) 

with the associated kernels given by 

(2.15) 
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The nonlinear integral equation (2.14) is the starting point of the present study, 
and its solution is our main aim. Once (2.14) is solved, the free-surface profile is given 
b s  

(2.16) 

where the integration path is indented as indicated before (figure 1) .  The far free waves 
are obtained from (2.16) by letting x+--co. I n  the case of three-dimensional flows 
they result from the pole p = sec2 8 and are given in terms of the complex amplitude 

0) by 

~ ( z ,  z )  = ti {In a(sec2 0 ,8 )  17(sec2 8,8) eci sec*s(z cOss+z sec4 8 d6. (2.17) 

Following Havelock ( 1934), the wave resistance (made dimensionless with respect 
to p ’ U 6 / g 2 )  is found by evaluating the far free-wave momentum flux, resulting in 

D = 1” a(sec20,8)a*(sec28,8)17(sec28,8)ZZ*(sec28,8) sec58d8, (2.18) 
J -in 

with the asterisk indicating complex conjugate. 

general expression 
In the two-dimensional case the far free waves are Stokes waves, which have the 

r(s) = q(1) eis + r(l)* e-iz + 11(2) e 2 i ~  + r (2)* e-2iz + . . . , (2.19) 

where the coefficients ~ ( l ) ,  q(,), . . . are obtained from the contributions of the poles 
related to  A and a in (2.16). The wave resistance (see Appendix A) is given to third-order 
terms in the amplitude by 

D = p )  p*. (2.20) 

If we assume that the pressure distribution is proportional to a small slenderness 
parameter E = o(1) we may seek an asymptotic solution of (2.14) for n ( k )  = o(1). The 
classical approach is to expand a(k) in a regular perturbation-expansion power series 
in E .  Thus, with 

substituted in (2.14), separating terms of the same order yields, after a few 
manipulations, 

a(k) = a,(k) + a,(k) + a,(k) + . . . (2.21) 

a,W = 1, (2.22) 

(2.23) 

(2.24) 

where 

Q;(k,k,,k,) = Q,(k,k1,k,)+QZ(k,k,) Q,(k-k,, k 2 ) + Q 2 ( k , k - k , ) Q 2 ( k - k , , k ~ ) .  
(2.25) 

In  the regular perturbation solution each term is expressed explicitly as a function 
of terms of lower order. Once a,, a,, ..., arc determined from (2.22), (2.23), ..., the 
far free waves and the wave drag may be evaluated with the aid of (2.16)-(2.20). This 
will be demonstrated in 993 and 4 for two simple examples of pressure distributions. 
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The first approximation in (2.13), for a, = 1 (2.22), i.e. 

C l W  = - W ) / A ( k ) ,  (2.26) 

is the FT of the classical linearized solution of the free-surface problem. Similarly, 
c2 and Q can be obtained by first expanding the equations of flow and subsequently 
taking the FT of the equations of various orders. 

3. Illustration of second-order regular perturbation solution 
(two-dimensional flow) 

As a first step toward the investigation of the solution of the integral equation 
(2.14), we have considered the following example of a two-dimensional pressure 
distribution 

where 1 = Fr-2 is the dimensionless lengthscale of the pressure patch (Fr is the Froude 
number), E is the small parameter reflecting its slenderness and W is the dimensionless 
weight supported by the distribution. 

The choice of this particular pressure distribution has originated from the study 
of the nonlinear wave resistance of a submerged cylinder, which is the object of a 
separate article (Dagan & Miloh 1985). Its relative simplicity allows us to  derive 
closed-form solutions and to grasp the main effect of nonlinearity at the expense of 
simple computations. At any rate, our main interest resides in three-dimensional 
flows, and it is worthwhile to consider more complex distributions only for such flows. 
The study of the planar flow is still of theoretical interest for the purpose of comparing 
it with existing solutions obtained by other methods. Furthermore, as we shall show 
in $4, it facilitates the solution of the three-dimensional problem. 

The FT of the pressure p (3.1) is given by 

n(k) = ($):el2 e-lklz. (3.2) 

Our interest resides in the wave resistance generated by the moving pressure p. 
The first-order far free waves are readily found from the solution [,(k) (2.26), by its 
substitution in the two-dimensional version of (2.16) and extraction of the contribu- 
tions from the poles k, and kII, the only surviving terms for z - t - c ~ .  The general 
result is 

(3.3) 

The first-order term of the dimensionless wave resistance is found immediately from 

(3.4) 

7, = i(2x)i[n(i)  eiZ-n(-1) e ~ ’ ~ ] .  

(2.20), (2.22) and (3.3) as follows 

D, = 2xa1(1)u3-1)Ll(l)Ll(-l) = 2xn2(1), 

which yields for the particular case (3.2) 

D 
W 

D,  = (n#)2 0-21, 9, = 1 = n,# e-21, (3.5) 

where 9, is the drag-over-weight ratio, a meaningful physical quantity for pressures 
that support a vehicle. The dependence of 9 , /~  upon the Froude number Fr  = 1-: 
is depicted in figure 2. 

The second-order nonlinear term is given explicitly by (2.23) form = 1. Substitution 
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Fr = 1-1 

FIQURE 2. The wave-drag components based on the second-order regular perturbation expansion 
of the wave amplitude for two-dimensional flow: -, 9 J e  (3.5); -.-.-. , 6,,/e2 (3.11);-----, 
d,,/E8 (3.11). 

of the kernel (2.15), (2.11) and (2.8) in (2.23) leads to an imaginary contribution from 
the semiresidues of A@,) and A(k- k,) and to a principal-value integral that is real. 
Thus the general result for the second amplitude a,(k) = a,,(k) + iaZI(k) is given 
explicitly for 0 < k < 1 by 

1 [ A(k-l)17(k) A(k+l)17(k)  ' 
(k - 1 ) n( k - 1) n( 1 ) + n(k + 1) n( 1 ) 

a&) = k(2k)t 

and a similar expression for k > 1. Further substitution of the kernels K, and Ka, 
which have the simple expressions 

-K,(k, k,) = 2 4  (k, < O ) ,  

P,(k,k,)  = - K , ( k , k , )  = - k , ( k - k , )  (0 < k, < k), (3.7) 

[o (k, > k)' 
and of A(k) (2.10) in (3.6) yields 

(3.8) 

In the particular case (3.2), a2 can be calculated in a closed analytic form by 
substituting (3.2) in (3.8), the result being 

a2(l) = ia,,(l)+a2R(1) = ind2 e-2'++Z2[1 -2 e-2z Ei (2Z)], (3.9) 

with Ei denoting the exponential integral. 
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Finally, the dimensionless wave drag based on the solution up to second order is 
obtained in a similar manner to the first-order drag as follows: 

D = D,+D, = 27C172(1)[1+a2(l)] [l+a,*(l)] 

= 27Cp( 1)  {[I + a2R( 1)12 + aiI( 1)). (3.10) 

Substitution of (3.9) in (3.10) results in the following expression for the higher-order 
terms for the wave drag: 

9 - - - - €  2 - 2922+~3923 = a2{xZ4 e-2z[1 -2 e-21 Ei (21)]} 

+ ~3{~~Zs[l  - 2 e-2z Ei (2Z)I2 + n2 e-6z }. (3.11) 

To the best of our knowledge, this, and the associated cylinder problem (Dagan 
t Miloh 1985), are the only ones for which closed-form second-order solutions have 
been found so far. 

It is worthwhile to noh  that in (3.11) we have included terms of order a3, whereas 
the usual, consistent definition of the second-order drag is the term gZ2 solely. 
Nevertheless (3.11) may be interpreted as consistent in the sense that it is based on 
the second-order approximation of the velocity potential. Furthermore, the total drag 
D, +D2 (3.11) is positive-definite for any type of pressure distribution and range of 
parameters. The two components gZ2 and gZ3 are represented in figure 2 as functions 
of the Froude number. For a fixed Fr the expansion for the drag is asymptotically 
uniform for E + O .  This is also true for the high-Froude-number limit Z+O, which yields 
in (3.11) 

(3.12) 

where y = 0.577 ... is Euler's constant. The situation is different for the small- 
Froude-number limit ,!+ 00, as the ratios between the real parts of the second- and 
first-order amplitude (3.9) and drag (3.11) tend to 

Hence it can be seen that the small-Froude-number limit is non-uniform unless 
sZ2 = o( l ) ,  or, in other words, no matter how small is E ,  second-order nonlinear effects 
become large compared with the first-order solution when Fr+O. A graphical 
illustration of this statement is given in figure 3, in which the ratio (9, + g2)/9, (3.17) 
is represented as a function of el2. For d2 around 1.2, for instance, the ratio is 
already 2. Thus in the range of say el2 > 0.4 the regular perturbation expansion is 
no longer valid and a different approach has to be used. 

The solution of the flow problem in Fourier space makes possible the interpretation 
of the nonlinearity of wave resistance from a new angle. Thus in the linearized solution 
the amplitude of the far free waves results from the selection of the wavenumber 
component k = f 1 of the FT of the pressure H(k) (3.2). In contrast, the second-order 
amplitude (3.6) originates from contributions of all wavenumbers of n(k) via the 
product I 7 ( k l ) l 7 ( l - k , )  in the convolution integral (2.23) and the kernel Q, (2.15). 
The main result, however, is that at small Froude number the leading term stems 
from contributions of wave-number k, in the range 0 < 1 k, I < 1 solely. 
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0 1 2 3 
&Ip = e/Fr4 

FIGURE 3. The ratio between various wave-drag nonlinear expressions and the first-order wave drag 
for two-dimensional flow: -, leading-order term (3.17) for small Froude number; ---, 
nonlinear generalized solution (5.9) and quasilinearized solution (6.13) ; ---.- , quasilinearized 
solution (6.22); ---, quasilinearized solution (6.26). 

It is also advantageous for the main developments in the sequel to formalize this 
result by splitting the kernel 0, (2.15) into two parts: 

Q,(k k,) = Q%k, k,) + Q:(k, kJ, (3.14) 

with Qi defined for k > 0 by 

such that in (3.6) we .obtain 

1 

a d 1 )  = a d -  1 )  = (270-i Qi(1, k,) dk, 

The expression for Qi (3.15) results from the definitions of 0, (2.15), P, ( Z . l l ) ,  K3 
(2.8), A (2.10) and l7 (3.2). 

The first term in (3.16) is precisely the one that contributes to the leading order 
in (3.13), whereas the remaining one, associated with the kernel QL, is of lower order 
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by 1. Indeed, for the present example (3.2) we have in (3.16) 

a2R(1) = +Z2+o(d), (3.17) 

A similar result has previously been obtained by a different method (Dagan 1975) 
where the small-Froude-number non-uniformity has been established by examining 
the nature of the singularity of the complex velocity associated with the wave-making 
disturbance. Thus in table 1 of Dagan (1975) it  is shown that the amplitude ratio 
a2/a1 is non-uniform like c/Frz,  e /Fr  and e In Fr for a submerged body of length I 
and of a source-like, elliptical or wedge-like leading-edge shape respectively. Since 
in the present example the pressure distribution (3.1) is associated with the more 
severe singularity of a doublet type, the solution (3.17) is non-uniform like s /Fr4 .  

Furthermore, it was shown in the same study that these non-uniform terms 
originate from the Fourier transform in the complex plane of the square of the 
first-order complex velocity (Dagan 1975, equation (37)). Now it is easy to show that 
the FT of the real part of the square of an analytical function is different from zero 
only in the interval 0 < I k, I < k. Indeed, with Re [ ( d f l d ~ ) ~ ]  = (a@/az)2- ( a @ / a ~ ) ~ ,  
where z = z + iy is here a complex variable, f is an analytical function and @ denotes 
its real part, we have by the convolution theorem and for y = 0 

where $(k) = FT @(x, 0). Now it is easy to ascertain that for k > 0 on one hand and 
for k, < 0, k, > k on the other, the bracket in (3.18) is identically zero. Thus there 
is a close relationship between the results achieved by the two different methods, and 
this analogy will be discussed further in 96. The advantage of the present line of attack 
in comparison with the previous one resides, however, in its applicability to the more 
involved case of three-dimensional flows, which is illustrated in $4. 

4. Illustration of regular perturbation solution (three-dimensional flow) 
We consider now the more interesting problem of a three-dimensional flow, and 

demonstrate the general approach outline in 92 by applying it to a simple particular 
case. The selected pressure distribution, an immediate generalization of the two- 
dimensional example (3.1), is given by 

where again 1 = Fr-2 denotes the horizontal lengthscale, e is the slenderness small 
parameter and W is the dimensionless weight supported by the pressure. As in the 
two-dimensional case (3.1), this example of an axisymmetric pressure patch has 
originated from the study of the motion of a submerged sphere, which is discussed 
in Dagan & Miloh (1985). 

The FT of the pressure p (4.1) is found as follows 

n(p,e) = (2q-1 SJ-1 P(z,z) exp[ip(x cosO+z sin8)] dzdz = el3 e-lp (4.2) 

which is analogous to (3.2), both two- and three-dimensional n ( k )  being proportional 
to the weight W times an exponential factor. 

15 FLM 159 
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a, = 1 (2.22), which gives 

T. Miloh and G .  Dagan 

The first-order wave drag can be computed in a closed form by using (2.18) with 

D, = ~ ( S P ) ~  jo~ exp ( - 21 sec2 0) sec5 8 dB 

where K ,  denotes the modified Bessel function of order n (see Havelock 1934). 
Our main interest resides here, however, in the non-uniform behaviour a t  the 

low-Froude-number limit of the drag (4.3). The leading-order term is obtained by 
letting I +  00 in (4.3), and is given by 

(4.4) 
2A D, = +n(el3)2 - e-21. 9 = 3 = ~(27c): El i  e-21, 

1 ’ l W  

where neglected terms are of order &. 
The low-Froude-number limit (4.4) could be obtained directly, without solving first 

exactly for D,, with the aid of the Laplace method applied to the integral (4.3). 
Indeed, the argument of the exponential in (4.3) has a minimum for 8 = do = 0, and 
by the Laplace method one has 

for h’(0,) = 0 and h”(0,) > 0. By applying (4.5) to the integral (4.3) we indeed recover 

The second-order complex wave amplitude is given explicitly by (2.23). Similarly 
to  the two-dimensional case, u2 is made up from an imaginary term originating from 
the semiresidues of Q, and from a real, principal-value integral. Since our main 
concern is in the far free waves and for small Froude numbers, i t  can be shown in an 
analogous manner to the two-dimensional solution that the semiresidues of 0, will 
contribite terms O(e-32), which are negligible compared with the principal-value 
term. 

Proceeding with the evaluation of the real part of u2 (2.23), we shall use the 
following notation : 

(4.4). 

(4.6) 1 k = (p cos0,p sine), k, = (p, C O S ~ , , ~ ,  sine,) 

Aye,) = p2-2pp1 cos(e-e,)+p;. 

Substitution of (4.6), (4.2) and (2.15) in (2.23) yields for the complex amplitude 
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Unlike the two-dimensional case, it is difficult here to obtain a closed-form 
expression for any 1. The low-Froude-number limit can be extracted, however, by first 
applying the Laplace method to the function F (4.7). The leading-order term for Z+ 00 

is obtained from h'(8,) = 0, which leads to 0 = el, A(@ = I p - p l (  and reduces (4.7) 

Finally, the contributions to the far free waves (2.17) and drag (2.18) originate from 
p = sec2 8, which gives for the second-order wave amplitude 

sec* 8 
p'f (sec20-pl)fdpl = &(27t)f& sec5e, (4.10) L a2(sec2 8, e) = (27t)aeli sec e 

and for the second-order wave drag 

D,+D2 = - $ 7 t ( ~ P ) ~  [1+&(27t)f& sec50l2 e-2zsec*e sec68 d0 (4.11) 

On applying again the Laplace method to (4.11), precisely as in the preceding 
paragraph, and dividing by the first-order wave drag D, (4.5) yields a low- 
Froude-number expansion for the second-order drag 

(4.12) 

which is represented graphically in figure 5. The regular perturbation expansion is 
therefore non-uniform unless €8 = E/F@ = o(1). Otherwise, no matter how small is E ,  

the second-order term becomes arbitrarily large compared with the first-order one 
for Fr+O. A uniform solution of the original integral equation (2.14) will be derived 
in $5. 

Thus it is clear that, unlike the two-dimensional flow, the elementary three- 
dimensional far free waves propagate in the plane y = 0 at different angles 8. As is 
well known, and has been found here as well, the dominant contribution to the 
first-order wave drag at small Froude number originates from the transverse waves, 
for which B = 0. Thus, from a kinematical point of view the two- and three-dimensional 
cases are quite similar, since the transverse waves that trail behind the disturbance 
are essentially of a two-dimensional nature. The three-dimensional drag, however, 
suffers an additional reduction as compared with the two-dimensional one since the 
transverse waves represent only part of the far whole free-waves manifold. This can 
be easily seen by rewriting the drag (3.4) and (4.4) as follows 

I 9, = W e-21 (2-dimensional), 

9, = 8(2n)f 14 e--2z (3-dimensional), 
(4.13) 

after replacing E by the corresponding weight function W .  It is seen that the spatial 
effect is to reduce the three-dimensional wave drag asymptotically by a factor of 1-4 
and also numerically by a factor of (8 d(27t))-l as compared with the two-dimensional 
drag. 

Similarly to the two-dimensional case, the dominant nonlinear contribution to  the 
drag stems from the interaction between the various Fourier components of the 
pressure distribution. Furthermore, it has been shown that it is only the nonlinear 
interaction between the transverse waves, i.e. for 8, = 0 = 0, that contributes to the 

15-2 
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wave drag at the leading-order term. This leads in the expression for the wave 
amplitude a, (4.10) to a summation on wavenumbers 0 < p1 < 1, similarly to the 
two-dimensional case (3.7). There is agein a further reduction in the nonlinear effect 
if the two-dimensional ratio a8/g1 (3.13) is compared with the correeponding 
three-dimensional ratio (4.12). This numerical and asymptotic diminishing effect, 
which is relafed to the spread of the waves, should serve as a warning against any 
intuitive attempts to generalize the two-dimensional results to three-dimensional 
configurations. 

Finally, in a similar manner to the two-dimensional flow (3.14), we can separate 
the kernel Q, in (2.23) into two parts 

Q,(u,) = ~ ~ ~ , o ; ~ ~ , e , ) ~ ( e , ) + ~ i ( p , e ; p ~ , ~ ~ ) ,  (4.14) 
where 

a;@, 0; P1,O) = a:@, p,) 

Q;(p, 0 ;P I ,  0) = 0 (PI PI,  
and B(B,)  denotes the Dirac delta function in (4.14). As in the two-dimensional case, 
the leading term of the amplitude a,@, 0), which is O(el%), originates in (2.14) from 
the integration over Qi, whereas (2; yields a contribution of order I&, 

5. Derivation of small-Froude-number uniform solution 
In the preceding sections we have shown that the ratios between the second- and 

first-order wave amplitudes u2/al become non-uniform like €1, and €1: for the two- 
or three-dimensional examples respectively. Thus the regular perturbation expansion 
breaks down and the naive separation of terms in the basic integral equation (2.14), 
which leads to (2.22)-(2.24), is not warranted. 

We shall derive now a procedure that leads to a uniform perturbation expansion of 
a(k) fore = o(1) and Fr = o(1) in the range €2, = E F ~ - ~  = O(1) or E Z ~  = eFrP5 = 0(1), 
for two- or three-dimensional flows respectively. In other words, we want to extend 
the domain of validity of the regular perturbation expansion for small Fr. The 
domains of uniform validity of the regular perturbation expansion and of its 
extension are represented schematically in figure 4. 

Further extension, in the range E Z  = E Fr-, = O( 1) for instance in two dimensions, 
implies retention of additional nonlinear terms beyond the leading one. Such an 
extension, in the third region of figure 4, is not considered here. 

a(k)-(27t)3 lok QS, (k ,k , )a (k , )a (k -k , )dk ,  = 1 +(2x)-: 

for the two-dimensional flow with Q: given by (3.15), and 

Towards this goal, we rewrite the basic integral equation (2.14) as 
03 

Ql-,(k, k,)a(k,)a(k-k,)dk, 

(5.1) 

a(P ,0) - (27t r1 j~  Qfl(p,p,)a(p,,O)a(p--p,,O)p,dp, 

= 1 + (27c)-' 1 r03 Q'-,(k, k , )a(k,)  a ( k - k l )  dk, (5.2) 

for the three-dimensional flow with Qi given by (4.15). 
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Fr = o(1) Fr = t i  

FIGURE 4. A schematic representation of the domains of uniform validity of (1 )  the regular 
perturbation expansion 6 P o( l ) ,  Fr = O(1); (2) the generalized solution 6 = o( l ) ,  Fr = o(l), e/Frz 
or E/F@ = o(1) and (3) E = o(l) ,  arbitrary Froude number. 

Under a regular perturbation expansion for B = o(1) and in the ranges of Fr 
mentioned before, the two terms of the left-hand sides of (5.1) and (5.2) become of 
the same order. They have to be kept in the same equation, therefore, to ensure a 
uniform expansion. In contrast, the last term of the right-hand side of (5.1) and (5.2) 
is asymptotic to a(k)  under the same limits and for 1 k I = 1. 

Our basic idea is to expand the complex wave amplitude a(k) in a generalized 
perturbation expansion 

(5.3) 

such that after substitution in (6.1) or (5.2), af  satisfies the following integral 
equation : 

(5.4) 

with m - 1 or 2 for two- or three-dimensional flows reepectively. The next term in 
the generalized expansion, a%, satisfies a similar integral equation, which is obtained 
by grouping terms of the next order, i.e, 

ag(k;E, 1)  = af(k;s, 1)+af(k; E ,  I ) +  ... 

af(k) - (27t)d" J: Qi(k, k,)  af(kl) af(k-k,) dk, = 1, 

co 

= ( 2 R ) +  s_, Q:& kl) a w l )  W - k J  a,, (5.5) 

and so forth. 
The analysis of the previous sections implies indeed that (6.3) is a uniform 

expansion for the values of k that give the far free waves. Furthermore, an expansion 
of af for B = o( 1) and Fr = O( 1) recovers the Arst- and second-order leading terms of 
a, and a,. The domains of uniformity of the regular and generalized expansions are 
illustrated schematically in Agure 4. 

It should be emphasized that (6.4) is a Volterra nonlinear integral equation, which 
is considerably simpler to handle numerically then the original integral equation 
(2.14). This will become apparent as we proceed with the derivation of uf for the 
selected pressure distribution. 

Indeed, the integral equation (6.4) can be rewritten for two-dimensional flow with 
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0, given by (3.15) and I7 by (3.2) as 
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a f ( k , ) a ~ ( k - k , ) d k ,  = 1. a f ( k )  -+el2 lok kl (k  - k l )  
( 1  - k, )  (1  - k +  h i )  

This Volterra nonlinear integral equation can be easily solved in an explicit form 
by a standard numerical procedure by discretizing the interval 0 < k,  < k .  Thus, with 
k replaced by k, = ?z/N ( n  = 0,1 ,2 ,  ..., N ) ,  af(k,) can be determined in terms of 
af (knP1)  by a single algebraic operation from (5.6) as follows: 

m n 
( - N  n N  

k =-, k =-, m , n =  1,2 ,... 

where a = 1 for n = N a n d  a = 1 -+e12/N for n = N, since the kernel in (5.6) is unity 
for k = k ,  = 1 .  

It should also be emphasized that in (5.7) the summation is truncated a t  m = n- 1 
because the term k ,  - km vanishes for m = n = N. 

Similarly, by substituting Qi (4.15) and I7 (4.2) into (5.4) for three-dimensional 
flow, we get 

This equation can be easily solved again by the same numerical procedure which 
led t o  (5.7), with a = 1 for all n, since, unlike (5.6), the three-dimensional kernel (5.8) 
vanishes for pi = p = 1 .  

It is seen that the unknown coefficients of the far free-wave amplitudes, uf( 1 )  and 
af( 1 , 0), depend only on the parameters €1, = e/Fr4 and el! = e/Fr5 respectively. 

Once these coefficients are determined by solving (5.7) or (5.8), the generalized wave 
drag is given by 

- gf = [af(l)12 (2-dimensional), 

- 9f = [a?( 1 ,  0)12 (3-dimensional), 

9 1  

9 1  

by virtue of (2.20) or (3.4) for two-dimensional flow or (4.4) for three-dimensional flow. 
The results of the numerical solution for the generalized wave drag (5.9) are 

represented in figure 3 (two-dimensional flow) and in figure 5 (3-dimensional flow) 
as functions ofd2 and sli respectively. It is seen that the nonlinear drag grows faster 
with these arguments than the second-order perturbation solutions (3.17) and (4.12). 
Furthermore, the latter is seen to depart significantly from the generalized solution 
for el2 > 0.8 and el! > 3 respectively. Thus, in these examples the non-uniformity of 
the regular perturbation expansion is more severe in two- than in three-dimensional 
flow. 

This completes the derivation of the first-order generalized solution which is 
uniformly valid a t  second-order for the ordering 

e = o ( l ) ,  Fr = o(l) ,  eZ2 = e /Fr4  = O(1) 
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0 2 4 6 8 10 

elf  = e / F P  

FIQURE 5. The ratio between various wave-drag nonlinear expressions and the first-order wave drag 
for three-dimensional flow for small Froude number: -, leading-order term (4.12) of regular 
perturbation expansion; ---, generalized solution (5.9) and quasilinearized solution (6.13) ; 
_._._ , quasilinearized solution (6.22) ; ---, quasilinearized solution (6.26). 

in the two-dimensional example and 

E = o(l) ,  Fr = o( l ) ,  €1: = E/F@ = O(1) 

in the three-dimensional example. 
In  Appendix B we evaluete the highest-order contributions for Fr+ 0 in the 

third-order perturbation term (2.24). These contributions are found, in the present 
examples, to be rather small compared with the second-order terms. 

6. Quasilinearized generalized solutions and comparison with existing 
approaches 

As we have already indicated in $ 1, the existing approximate methods to compute 
wave resistance in three-dimensional flows for small Froude number are based on the 
quasilinearization of the free-surface conditions. Furthermore, the approximate 
equations are formulated in physical rather than in Fourier space. In the present 
section we are going to compare the generalized solution of $ 5  with a few existing 
quasilinearized approximations. 

6.1. Formulation of the free-surface conditions for  the generalized 
solution in physical space 

The generalized first-order amplitude function af(k) satisfies the Volterra integral 
equation (5.4). We wish to find out what are the free-surface boundary conditions 
in physical space which would have led to the same integral equation in Fourier space. 
It is easy to ascertain that the kernel Qi defined by (3.14) and (3.15) for the 
two-dimensional example originates from the kernel K3 (2.8) via pZ (2.11). Indeed, 
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in the interval 0 < k, < k, for k > 0, in which 0, is different from zero, we have in 
(2.8) Kl = 0 and K3 = k,(k-k,), whereas, for k, > k, K3 = 0. Thus the FT of the 
free-surface conditions replacing (2.6) and (2.7) a t  second order and leading to the 
generalized solution are 

a2 

ikllr(k)+C(k) = - W 4 + ( 2 V i  r K,(k ,k , ) I l r (k , ) l l r (k-k , )dk , ,  (6.1) 
J --Q, 

-ikC(k)+lkl@(k) = 0. 

By inverting (6.1) and (6.2), it  is easy to ascertain that they could be obtained from 
the FT of the following boundary conditions in the physical plane, replacing (2.2) : 

a7 a@ -+-= 0 ( y =  0). 
ax ay 

It should be emphasized that in the original equations (2.6) and (2.7) @ stands for 
the FT of Y,  the potential @ on y = 7, whereas (6.3) and (6.4) are written down for 
@ on y = 0. Furthermore, i t  can be seen that in the quadratic term in (6.3) the sign 
of !j(i3@/ay)2 is different from that of the Bernoullian term of (2.2). This change can 
be traced back to (2.3), and results from the relationship 

w / a X  = a q a X +  ( a q a y )  aT/az. 

Elimination of 7 from (6.3) and (6.4) yields the following boundary condition for 
the potential : 

An interesting feature of this boundary condition is that i t  can be rewritten in terms 
of analytical functions. Indeed, with w(z) denoting the complex velocity, such that 
a@/ax = Re w, (6.5) may be rewritten as 

This interpretation of the free-surface boundary condition connects the present 
analysis with the one carried out previously (Dagan 1975), as mentioned already in 
$2. It is worthwhile to mention here again that the two formulations, i.e. the one 
in which the quadratic term in (6.6) is expressed by w2 or the resulting Volterra 
integral equation (5.6) in Fourier space, are intimately related. This point deserves 
further investigation in relation with other free-surface two-dimensional flows. 

Turning now to the example of three-dimensional flow, it is easy to ascertain by 
the same procedure of tracing back that the generalized integral equation (5.8) also 
stems from the same simplified boundary condition (6.5). As a matter of fact, (6.5) 
leads to a more complicated integral equation than (5 .8) ,  which is obtained only 
asymptotically for Fr+O. This point can be understood if we rewrite the kernel 
associated with the convolution originating from the nonlinear terms in (6.5) as 

K;(p, o ; p , ,  el) = i[ l  k, I I k-k, I +k;(k-k,)l 
= cos (e-ol)+p:l:+pp,  coso, cose-p: cos2e1). (6.7) 
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Only under the asymptotic analysis of $4, which leads to 0 = 8, = 0, does K; reduce 
to the simple expression Ki = pl(p-p, )  for p1 < p and K; = 0 for p1 > p,  which in turn 
yields the Volterra integral equation (5.8). By the same token we can regard the 
generalized solution as one originating asymptotically from the more involved 
boundary condition 

Thus an important conclusion for the present example is that by operating in 
Fourier space we are able to further simplify the three-dimensional flow problem 
beyond the similar result in physical space. In other words, (6.5) or (6.8) contain terms 
whose FT drop out in the small-Froude-number limit which leads ultimately to (5.8). 
This finding suggests that it is worthwhile to pursue the line of attack followed here 
for further investigation of three-dimensional flows. Still, a comparison with existing 
approaches will be carried out by using (6.5) and (6.8) as a reference. 

6.2. Solution by full quasilinearization 
The quasilinearization of the free-surface condition is achieved by substituting 

@ q l =  @,+Q) (6.9) 

in (6.5) or (6.8) and by neglecting terms O((p2). This procedure yields 

- -- app(x) +--[(3--y-f!Sy] 1 a a@, (y = 0) (6.10) ax 2ax 

in lieu of (6.5). The integral equation for the generalized solution based on (6.10) is 
achieved by applying the FT to (6.10) and also an additional small Froude-number 
limit for three-dimensional flow. It is simpler, however, to carry out the quasilinear- 
ization directly in the integral equations (5.4), (5.6) and (5.8) by substituting 

a q k )  = 1 +S(k) (6.11) 

and by subsequently neglecting terms 0(a2). The result is 

aq1(k)-2(2x)-im Qi(k, k,) aq1(k,) dk, = 1 - (2n)drn Qi(k, k,) dk, (6.12) 

replacing (5.4), and similar linear Volterra integral equations replacing (5.6) or (5.8). 
These equations have been solved by the numerical procedure of $5 and the results 
have been substituted in the expression of the drag (5.9) : 

m1 
- = [aq1(1)lZ (2-dimensional), 
9 1  

- = [aql( 1, 0)12 
9 9 1  

9 1  
(3-dimensional). 

(6.13) 

Surprisingly enough, the values were identical (to the forth digit), in the range of 
values of el2 and sd of figure 3 and 5 respectively, with the computed nonlinear drag 
(5.9). We could not find a general explanation for this result, and further investigation 
should show whether it is fortuitous or not. 
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6.3. Quasilinearization by a ‘ rigid-wall ’ approximation (Dawson approach) 
Another quasilinearized approximation, which has been employed in the past, is 
obtained by substituting 

QiD = @‘W+ F (6.14) 

in (6.5) and (6.8) and neglecting terms O(qY). I n  the case of flow past submerged or 
floating bodies Grw is the rigid-wall solution satisfying the condition aGrw/ay = 0 on 
y = 0 (obviously Grw is singular within the flow domain y < 0). The derivation of 
various small-Froude-number approximations of this type are reviewed in detail by 
Tulin (1978). The development of this type of approximation for flow generated by 
a pressure distribution requires a few preparatory steps (see discussion in Doctors 
& Dagan 1980). The simplest way to  arrive at the appropriate ‘naive’ small- 
Froude-number approximation, similar t o  the ‘ rigid-wall ’ approximation, is to 
analyse the FT of the first-order solution (2.26), which yields for $,(k) 

ik, ik, Z7(k) 
$lW = - tll(k) = -- 

Ikl Ikl mi (6.15) 

We now rewrite (6.15) by using variables made dimensionless with respect to U’ 
and l’, i.e. K = kl = k /Fr2 ,  and obtain by (2.10) 

(6.16) 

The ‘naive ’ small-Froude-number approximation is obtained by expanding the 
denominator in (6.16) for fixed K and Fr2 + O ,  the first approximation, corresponding 
to the ‘rigid-wall’ solution for a body, being 

ik, l7(k) 
Ikl . 

p W ( k )  = - (6.17) 

It can immediately be seen by inversion in (6.17) that  Gprw satisfies the free-surface 
condition 

(6.18) 

which is precisely the result obtained by Doctors & Dagan (1980). We carry out now 
the quasilinearization of (6.15) by substituting GD = GrW+p for G, the result being 
precisely (6.10) with G ,  replaced by Grw, i.e. 

-+--- -- a w D  aGD a aGrwaGD a a G r w a Q D  

ax2 ay ax[ ax ax]+,[,%] 

Equation (6.19) has a structure similar, up to second-order terms, to the approx- 
imation suggested by Dawson (1977) for a submerged body or a ship (for discussion 
see Tulin 1982). 

Now, i t  is easy to solve the Volterra linear integral equation based on (6.19). 
Towards this aim we have to  quasilinearize (5.4) by substituting 

a D ( k )  = A(k)+S(k)  (6.20) 
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and neglecting terms O(62). The resulting equation is 

Ikl 
= 1 - (2n)-lm Q;(k,k,)A(k-k,)  a,. (6.21) 

This equation has been solved numerically for both two-and three-dimensional 
examples, and the corresponding wave drags 

I -- - [aD(1)I2 (2-dimensional), 9 D  

9 1  

- = [aD( 1, 0)12 
9 D  

9 1  
(3-dimensional), 

(6.22) 

are depicted in figures 3 and 5 respectively. It can be seen that the quasilinearization 
procedure by QrW leads to a significant underestimation of the wave drag as compared 
with the generalized solution (5.9). 

This discrepancy can be explained by analysing the approximation leading from 
el (6.15) to pw (6.17). It can be seen that the 'naive' approximation pw is valid 
for wavenumbers I k 1 + 1 , far from the pole of [A(k)]-l. But in the Volterra integral 
equation (6.12) the range of integration of k, extends to I k, I = 1, making the 
replacement of @, by Pw in (6.10) somewhat questionable. 

6.4. Quasilinearization by a ' rigid-wall ' approximation (Inui-Kajitani approach) 
Inui & Kajitani (1977) have suggested a further approximation in the free-surface 
condition related to wave-making by a body, namely to neglect the nonlinear term 
in the right-hand side of (6.19). Thus the corresponding approximation here is 

(y = 0), (6.23) 

and the related integral equation replacing (6.21) is given by 

aIK(k)-2(2n)-fm Qi(k, k,)A(k-k,)alK(k,)dk, = 1. 
fOk' 

(6.24) 

It is worthwhile to mention that in the range 0 < I k, I < Ik I the contributions from 
the two nonlinear terms in and - (aq5/ay)2 (6.5) are the same, which is easily 
seen from the expression of K3 (2.8). Hence at the same order we could rewrite (6.23) 
as 

(6.25) 

which indeed in similar to, though not identical with, the Inui & Kajitani (1977) 
approximation (for a similar discussion see also Tulin 1982). 

The wave drag based on this type of approximation, 

I -- - [aIK(1)lZ (2-dimensional), B I K  

9 1  
(6.26) 

-- BIK - [aIK( 1, 0)12 (3-dimensional), 
9 1  
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is represented as well in figures 3 and 5 after solving (6.24). Unexpectedly, 9 1 K  is 
very close to  the nonlinear generalized solution 9y (5.9) or to  the full quasilinearized 
approximation (6.13). In  view of the observation a t  the end of the previous 
paragraph, this agreement can be explained only by mutual cancellation of effects 
of opposite signs. It is nevertheless worthwhile to mention that good agreement has 
been found between this type of approximation and second-order perturbation 
solution for a different two-dimensional pressure distribution by Doctors & Dagan 
(1980). 

7. Summary and conclusions 
The problem of wavegeneration and wave resistanceof steadily moving disturbances 

has been formulated in Fourier space by a procedure similar to the one leading to 
the Zakharov equation. The resulting nonlinear integral equation is first solved by 
the usual regular perturbation expansion. For the particular examples of travelling 
pressure distributions considered here it is found that the expansion of the wave 
amplitude and wave resistance is non-uniform for small Froude numbers, in 
agreement with results obtained previously by other methods for two-dimensional 
flows. The expansion of the velocity potential in Fourier space also permits one to 
single out the nonlinear term responsible for the leading contribution at small Froude 
number. 

By maintaining these terms in the first-order approximation of the free-surface 
condition, a generalized, uniformly valid, solution is obtained. It is found to satisfy 
a Volterra nonlinear integral equation, which lends itself to a rather simple numerical 
solution. The generalized wave drag is shown to be significantly larger than the one 
derived by a regular perturbation expansion, especially for the two-dimensional flow 
example. 

While the results for two-dimensional flow are merely a confirmation of those of 
previous studies, the analysis of three-dimensional flow provides new insight into the 
complicated nonlinear wave-making problem. Indeed, nonlinear three-dimensional 
wave-resistance analysis has been confined in the past to  involved numerical solutions 
of only a few examples. Besides the elucidation of the origin of the leading nonlinear 
term a t  small Froude number, the generalized solution presented here gives an 
opportunity to examine a few existing approximate approaches. The main result of 
the analysis, for the particular case a t  hand, is the confirmation of the belief that 
nonlinear free-surface effects can be accounted for by a quasilinearization of the 
free-surface condition. I n  the present example i t  was found that very good agreement 
with the generalized nonlinear solution may be obtained by quasilinearization with 
the aid of the first-order solution or by a procedure similar to that employed by Inui 
& Kajitani (1977). It is worthwhile to  mention here that the quasilinearization 
procedure can be also interpreted as wave generation and propagation on a 
non-uniform current, since it results in linear free-surface boundary conditions with 
variable coefficients. 

In view of the simplification achieved by solving the problem in Fourier space, i t  
is suggested that analysis of additional examples of three-dimensional flows by the 
same methodology is a worthwhile venture. 

We are grateful to  M. P. Tulin, whose comments have greatly contributed to the 
revision and expansion of the first version of the present study. 
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Appendix A. Derivation of (2.20) 
The two-dimensional wave resistance of a disturbing body moving with velocity 

c below and parallel to an undisturbed free surface is related to  the mean energy per 
unit area of the free surface B by (Lamb 1935, p. 415) 

u = ( ? - l ) E ,  

where cg is the group velocity. The dimensionless mean energy is 

where the second term in the right-hand side of (A 2), representing the kinetic energy 
of the fluid, is obtained by applying the Gauss transformation to the kinematic 
free-surface boundary conditions (2.2). The periodic properties of the velocity 
potential g5 and the free-surface elevation q over the interval 0 < x < 2x, together 
with the dynamic free-surface boundary conditions of zero pressure (2.2), yield 

E =  2n jo2' q 2 d z + l  871 JOm q [ r , ~ ~ + ( g ) ~ ]  dz+O(e4), 

where E here denotes the wave steepness (wave amplitude times wavenumber). Hence, 
to third order in E ,  the total mean energy depends only on the free-surface elevation. 
Substituting the Stokes expansion (2.19) with q(m) = O(em) in (A 3) shows that the 
only surviving terms of O(e3) result from the first harmonic of the first integral in 
(A 3), whereas the higher harmonics and the second integral contribute only terms 
O(e4). The mean total energy to third order is therefore 

E = 2 p  p* + O(E4). (A 4) 

Finally, since the ratio between the group velocity and the wave celerity for 
finite-amplitude waves in deep water is c,/c = $+O(e2) (Lamb 1935, p. 417), equation 
(2.20) for the wave resistance follows immediately from (A 1) and (A 4). 

Appendix B. Analysis of third-order effects for small Froude numbers 
An explicit expression of the third-order approximation is given by (2.24), and the 

question is whether this term also becomes non-uniform for d2 = O( 1 )  and sd = O( 1 ) 
for the two- and three-dimensional pressure distributions respectively. Although the 
computations are tedious, closed-form expressions can be obtained for a3( 1)  (2.24) at 
the leading-order term for 1 -+ m , i.e. Fr + 0. 

Starting with the two-dimensional example, it can be shown that, in the integration 
process in the (k,, k,)-plane that gives a3 in (2.24), the higher-order contribution 
originates from the portion of the plane for which I k- k, I + I k,- k, I + I k, I = k for 
k > 0. It may be recalled that a similar condition singled out the second-order 
contribution in $3.  It is easily found that the corresponding area in the plane is the 
triangle 0 < k, < k,, 0 < k, < k ;  thus (2.24) yields 

a3(k) = (2n)-' jr dk, /'* Qi(k, k,, k , ) d k , + O ( ~ ~ l ~ ) ,  
0 

where the two-dimensional kernel Qj(k,  k,, k,), evaluated over the triangle 0 < k, < k ,  
0 < k, < k,, is obtained by substituting (2.8), (2.11), (2.12) and (2.15) into (2 .25) ,  
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which gives 
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(B 2) 
Performing the double integration in (B I )  for k = 1 ,  with Q; given in (B 2), gives, 
for two-dimensional flow, 

It should be emphasized that a,(l)  is the only term that contributes at leading order 
to the wave drag. There is a third-order correction, which results in a shift of the 
velocity or the basic wavenumber well known in the theory of Stokes waves (see e.g. 
Wehausen & Laitone 1960). This effect upon wave resistance has been analysed in 
detail by Doctors & Dagan (1980), and it  is negligible for small Fr. 

Examination of the two-dimensional third-order term a, (B 3) shows that this 
term is non-uniform under the limit eZ2 = 0(1), and strictly speaking i t  has to be 
incorporated in the generalized integral equation (5.4). It turns out, however, that 
there is a considerable numerical reduction of this contribution as compared with 
a, (3.17) and a, (2.22). Indeed, we have the following ratios from these equations: 

Thus the third-order correction to  the wave drag (2.20) is quite small. Furthermore, 
a derivation of the generalized solution including the third-order term by quasi- 
linearization along the lines of $5 led to the same conclusion : for the selected pressure 
distribution the third-order correction at small Froude number is small compared 
with the second-order one. This is in contrast with the conventional Zakharov integral 
equation, in which the nonlinear wave interaction is governed by the third-order 
effect. 

A similar analysis was also carried out for the three-dimensional distribution (4.1) 
by employing the Laplace method. The third-order term (2.24) is now 

where 

m e ; pl, e, ; p,, 8,) = p1 + p2 + up COS e -PI cos el - p, cos e2)2 

+(p sine-p, sinO,-p, ~inO,)~]t  (B 6) 

and Q,” = Qj exp [Z(f-p)]. 

Let us first examine the asymptotic behaviour for 1 + 00 of the double integral 

Applying the Laplace method twice yields 
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which shows that, to leading order, the infinite integration domain for p, and p, may 
be reduced to the domain over which p-pl-p2 > 0, where f@, 8;p1,  8 ; p 2 ,  8) = p,  and 
a,” = a;. 

The next step is to employ the definition of the kernel Q; (2.25), which gives for 
8 = 8, = 8, = 0 and p = 1 

Finally, since 

we obtain from (B 5) and (B 8) 

a,(i, 0) = +215(10g 2 6.1 x 1 0 - v z 5 ,  (B 11) 

Again, similarly to the two-dimensional example, the three-dimensional third-order 
term yieldsanon-uniform contribution for& = e/Fr5 = O( 1). Thenumerical reduction 
compared with the lower orders, however, is even more drastic than for the 
two-dimensional case (B 4). Thus, by comparing a3 (B 11) with a, (4.10) anda, (2.22), 
we get 

and the impact upon the wave drag (2.18) is small for 8.4: = O(1). 
Concluding this Appendix, it has been found that the third-order term (2.24) of 

the regular perturbation expansion yields a small contribution to the amplitude of 
the far free waves and the wave drag in the range of non-uniformity investigated here. 
This has been found, however, for the particular pressure distributions selected in 
the text, and the general validity of this result is a matter of further investigations. 
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